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1. Motivation and Objective

Recent development using compact difference schemes to solve the Navier-Stokes

equations show spectral-like accuracy l'2. In this paper, we report further study

of the numerical characteristics of various combinations of the Runge-Kutta (RK)

methods and compact difference schemes to calculate the unsteady Euler equations.

Conventionally, the accuracy of finite difference schemes is assessed based on the

evaluations of dissipative error. The objectives are reducing the numerical damp-

ing and, at the same time, preserving numerical stability. While this approach has

tremendous success solving steady flows, numerical characteristics of unsteady cal-

culations remain largely unclear. For unsteady flows, in addition to the dissipative

errors, phase velocity and harmonic content of the numerical results are of concern.

As a result of the discretization procedure, the simulated unsteady flow motions

actually propagate in a dispersive numerical medium. Consequently, the dispersion

characteristics of the numerical schemes which relate the phase velocity and wave

number may greatly impact the numerical accuracy. The objective of the present

paper is to assess the numerical accuracy of the simulated results. To this end,

the Fourier analysis is performed to provide the dispersive correlations of various

numerical schemes.

First, a detailed investigation of the existing RK methods is carried out. A

generalized form of an N-step RK method is derived. With this generalized form,

the criteria are derived for the three and four-step RK methods to be third and

fourth-order time accurate for the non-linear equations, e.g., flow equations. These

criteria are then applied to commonly used RK methods such as Jameson's 3-

step and 4-step 3,4 schemes and Wray's algorithm 5 to identify the accuracy of the

methods. For the spatial discretization, compact difference schemes are presented.

The schemes are formulated in the operator-type 6 to render themselves suitable for

the Fourier analyses. The results of the analyses provide CFL limits, the numerical

dispersion relations, and the artificial damping required for stable and time-accurate
solutions.

Finally, the performance of the numerical methods is demonstrated by numeri-

cal examples. The first case is a quasi-one-dimensional calculation of the acoustic

admittance in a converging nozzle. The CFD results are compared with Tsien's

analytical solutionT; the harmonic content of this flow field is limited to one fre-

quency mode. All numerical schemes of concern provide accurate solutions. The
second case is a one-dimensional simulation of a shocked sound wave. The harmonic
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content is complex and distinct differences between various schemes are observed.

The results are also compared with the analytical solution provided by Morse and

Ingard s. In the one-dimensional cases, details of the numerical methods in setting

up the initial conditions and the perturbation on the computational boundary are

described.

The third case is a two-dimensional simulation of a Lamb vortex 9 in an uniform

flow. This calculation provides a realistic assessment of various finite difference

schemes in terms of the conservation of the vortex strength and the harmonic content

after travelling a substantial distance. The numerical implementation of Giles' non-

reflective equations Ir coupled with the characteristic equations as the boundary

condition is discussed in detail. Finally, the single vortex calculation is extended

to simulate vortex pairing 1°. For the distance between two vortices less than a

threshold value, numerical results show crisp resolution of the vortex merging.

2. Work Accomplished

2.1 Numerical Method

The Euler equations in Cartesian coordinates can be cast into a vector form:

3
__ OEi
0Q +_b =0, (1)
Ot Oxi

i=I

where Q is the unknown vector and Ei is the inviscid flux in the xi direction.

The Runge-Kutta algorithm is applied as the temporal discretization and the sec-

ond, fourth, and sixth-order compact difference schemes are applied to the spatial

discretization.

2.2.1 The Runge-Kutta Method

The use of the Runge-Kutta methods for flow equations stems from the applica-

tion of the methods to solve ordinary differential equations (ODEs). An ODE has

one independent variable and its solution is obtained by integrating the equation

from its initial condition. When one applies the Runge-Kutta method to the flow

equations, time is treated as the independent variable as is in an ODE, and the

convective terms are taken as the inhomogeneous part of the equations, such as

OQ
= R(Q). (2)

Notice that the boldface symbols which represent vectors have been temporarily

dropped for typographic convenience• In addition, all results in the following dis-

cussion are valid for both scalar and vector equations.

The Runge-Kutta methods have algorithms of the form

Qn+l : Qn + AtR(Qn, At), (3)
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where the increment function/_(Q", At) is a suitable chosdn approximation to the

inhomogeneous part of the equation, that is, R(Q). In general, the calculation of

the increment function/_ is subdivided into N steps on the interval t n < t < t n+l .

And the final increment function R is a weighted average of the inhomogeneous

terms evaluated at the different steps on the interval t n _< t _< t n+l, that is

Q1 = Qn + at(all Rn),

Q_ = Qn + At(a21Rn + a22R1),

Q3 = Q,, + At(a31R,_ + a3_R 1 + aa3R2), (4)

Qn+I _ Q, + At(aN1R n jr aN2R1 .{.... "t- OLNNRN-1),

where the superscript n, 1, 2,..., and n+ 1 denote the time steps on the time interval

t'* <_ tl <_ t2 <_ ... <_ tN <_ t n+l, and aij is the weighting factor for the step i and

term j. There are )-_1 i weighting coefficients to be determined arid an infinite

number of coefficient sets can be chosen. However, certain criteria must be met for

the algorithm to retain high-order accuracy.

In what follows, the criteria of the coefficient set of a 3-step Runge-Kutta method

to be third-order accurate is given. To proceed, we follow the conventional approach

and expand all inhomogeneous terms R i in Eqn. (4) to a Taylor's series about R n

and drop all terms in which the exponent of At is greater than 3. The result

is compared with its analytical counterpart by equating terms in like powers of

At. The result is tabulated in Table 1. For the convenience of the discussion, the

following simplification of symbols is activated: R denotes R(Q'_), Q denotes Q'*,

R' denotes (OR/OQ) '_, and R" denotes (02R/OQ2) '_. In addition to the equality of

the coefficients of all the powers of At, we also want the equality of the coefficients

of the functions of R, R', and R". As a result, we find the criteria of the coefficients

for the 3-step RK methods to be third-order accurate as,

0/31 -{-_32 @ 0_33 :

a11_32+ a33(a21+ a22) =

_,a32 + (a21+ a22)2a33=

O_i i O_22 O¢33 --

1, (5_)
1

5, (55)
1

_, (5c)
1

_. (5/2)

Equations (5a) and (5b) are the criteria of first and second order accuracy, re-

spectively. The remaining equations are of third order term. Since four equations

contain six unknowns, the system is underdetermined, and two of the coefficients

may be chosen arbitrarily. The obvious choice is to let the two coefficients be null

to reduce intermediate storage and numerical operations. According to Eqn. (5d),
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none of a, where i = 1, 2, 3, could be zero, and one can set the two of the three re-

maining coefficients to be zero. Therefore, at least one of the intermediate steps has

two non-zero coefficients. Consequently, one needs to store two steps of intermediate

solutions for the 3-step, third-order RK methods.

A 3-step Runge-Kutta method proposed by Jameson et al. 3 to solve flow equations

is

Q1 = Q,_ +AtR",

At. ,
Q2=Q"+T(R +R1),

At .
q.+l = q. + T(R + R2).

(6)

It can be shown that the weighting coefficients of the 3-step method satisfy only

Eqns. (5a) and (5b). And the method is second-order accurate in time.

Wray 5 proposed another 3-step method,

R
Q1 = Q" + _t(_ R"),

Q2 = Q1 + At( 5 R _ 17 1- _ R ), (7)

Qn+l = Q2 + At(_R"

l

5

-_R):

This formula may be manipulated to fit the generalized form as proposed in Eqn.

(4), and we obtain,

Q1 = Q" + At( _ R"),
5 1

Q2 =Q" + At(_R" + _R ), (8)

Q'_+I = Qn + At(IR" + _R2 ).

Wray's coefficients match all the equations in Eqn. (5) and therefore the scheme is

third-order accurate. In this formula, am is set to zero and two sets of solutions

are needed in the second and the third steps. The calculation can be carried out by

either the vectorized algorithm proposed by Wray, or straightforward calculation

according to Eqns. (7) and (8).

A similar procedure can be applied to the 4-step Runge-Kutta methods, and the

criteria for the scheme to be fourth-order accurate are:

O_41 -{-O_42 @ O_43 + O_44 -- 1,

1

(9a)

(9b)
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C_1216k42 "JC (0_21 "_- 6_22)2_43 "_- (C_31 "_- CI_32 "3L C_33)2_44 -- I
3'

I
0_iIC_220t43 "_- [OLllOt32 -{- (0_21 "_- _22)C_33] (144 --" _6'

I
_31_42 "_ (_21 + _22)3_43 + (_31 + _32 + _33)3_44 -"

_1xa22a43 + (a21+ _22)ana22_43
1

1

"_(a31 "4" a32 "_ (_33) [alla32 "_- (a21 Jr- a22)a33] a44 "- _,

1

(111 C_22C_33_44 -" 2"-4"

(9c)

(9d)

(9e)

(9f)

(9g)

Equations (ga) and (gb) are for first and second-order accuracy, respectively. Equa-

tions (9c) and (gd) are for third-order accuracy. The remaining equations are for

the fourth-order terms. Here, seven equations contain ten unknowns, and three of

the coefficients may be chosen arbitrarily.

A 4-step RK method attributed to Kutta 11 for solving ODEs was adopted by

Jameson et al.3 to solve the flow equations. The algorithm can be expressed as,

At -n
Q1 = Q"+ yn ,

At

Q2 = Q. + Y al, (10)
Q3 = Q, + AtR 2,

At "R"
Q,_+l = Q, + __[ + 2R I + 2R 2 + R3).

The coefficients satisfy Eqn. (9) and the algorithm is fourth-order accurate. How-

ever, this method requires all four intermediate solutions in the final step. As a

result, the use of this scheme for large-scale calculations is undesirable.

Later on, Jameson and Baker 4 proposed another 4-step algorithm,

At -n

QX=Q" +-_-n ,

AtR_
Q2 =Q_+ 3 '

5tR2
Q3._Qn_{_ 2 -- '

Q,+I = Q,+ AtR 3.

(11)

This scheme was proposed to calculate the steady state solutions and the transient

solutions were not of concern. For that purpose, the algorithm is convenient to

131



S.-T. Yu

program and no intermediate solution needs to be stored. For th6 present investi-

gation, however, the weighting coefficients of this method satisfy only part of Eqn.

(9) and the algorithm is second-order accurate. Nevertheless, this formulation is

favorable compared to a 2-step, second-order RK method because part of the third

and fourth-order terms are satisfied, namely, Eqns. (9d) and (9g). Consequently, a

larger marching step, i.e., a larger CFL number, could be used.

2.2.2 Compact Difference Schemes

The remaining task of discretizing the flow equations is the spatial differencing

of the inviscid fluxes. An effective manner for generating a high-order, central

difference scheme is the compact difference method. The scheme is obtained by

using only three and five points to achieve fourth-order and sixth-order accuracy

in space, respectively. The gain in the accuracy is not based on the involvement of

more points as in the conventional approach, but on implicitly solving the derivatives

simultaneously at all locations. According to Hermite's generalization of a Taylor's

series, 12 one can get

,)

, , ,ui_l + 4ui + Ui+l = ui+l - ui-1) + O(Ax4), (12)
/-_X-

ui-l' + 3ui' + ui+1' = 12Axl (ui+2 + 28Ui+1 - 28ui-1 - u___) + O(Ax6), (13)

where the superscript ' represents the spatial derivatives. Equation (12) is the

fourth-order method and Eqn. (13) is the sixth-order one. When the fourth-

order method is used in the interior nodes, a third-order biased implicit scheme 13

is adopted for grid nodes at the computational boundary, such as

, , 1

2u 1 + 4u 2 = _x (-5Ul + 4u_ + u3) + O(Axa),
(14)

2u',,ax + =  (sum= - 4=mo _l- + o(ax3).

When the sixth-order method is used in the interior nodes, the fourth-order scheme,

Eqn. (12), is used at locations one grid node away from the boundary and the

third-order biased scheme is used at the boundary. The application of the implicit

compact difference schemes with the appropriate boundary conditions involves the

inversion of a scalar tridiagonal matrix. The inversion of the matrix incurs little

penalty in terms of CPU time.

2.3 Fourier Analysis

By definition, any function, u(x,t), which is continuous, periodic, and square

summable can be expressed in a Fourier series expansion at a constant time,

OG

(15)
k=-_
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where L is the period of the function u(x,t), k is the wave' number, and i is _/-Z-f.

The Fourier coefficient is defined as,

1 fL/2 u(x, t)e-i2_kzlL dx. (16)
ft(k,t) = -_ d-L]2

In the Fourier analysis of a finite difference scheme, functions are defined at discrete

points. The discrete Fourier series and its coefficients are defined analogous to their

continuous counterparts,

K-1

=
k-----0

1 _ u,_e_i2,_kl/Ka"(k) = -g
j=l

j = O, El, =1=2,..., =l=c_,

k = 0,1,...,K- 1.

(17)

Here, the length of the computational domain L is decomposed into K grid nodes

(L = KAx). The superscript n denotes the time step and the subscript j is the

spatial location index. Similar to the continuous function, the algebraic system in

terms of the function exp(i2rkj/K) is periodic over the computational domain L

(or K) and orthonormal, such as

ei2_rkJl K = ei2nk(J+K)l K

1 (18/
"-g E ei2*klJ/K e--i2'rk*jlK = 6k, k2

5=0

where _k,k2 is the Kronecker delta. Therefore, the establishment of the discrete

Fourier series and coefficients is self-sufficient, and is not an approximation of its

continuous counterpart.

As shown in Eqns. (17) and (18), the harmonic content of the discretized equation

is limited to the number of grid nodes used in the computational domain. A discrete

solution u_ at a location (j) and time (n) is a linear combination of K wave modes.

The Fourier analysis is performed by substituting each wave mode of the discrete

Fourier expansion, Eqn. (17), into the discretized flow equations to calculate the

amplification factor, g(k), which is defined as

e"+'(k) (19)9(k)-

The procedure is repeated for all wave modes (k = 0,1,..., K - 1) and the full

spectrum of the amplification factor is obtained. In this process, we map the func-

tion u in terms of spatial variable x on the interval [-L/2, L/2] to the wave number

space on [-_r, 7r] assuming that the analysis is local for an infinite and periodic do-

main. Therefore, the solution of the amplification factor on the interval [-Tr, 0] is
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the complex conjugate of that on [0, It]. For this reason, the results of our Fourier

analyses are presented on the interval [0, lr].

In the present investigation, one-dimensional equations are considered for the

Fourier analysis. In addition, we can perform a similarity transformation to trans-

form the one-dimensional Euler equations to their characteristic form, i.e., three

decoupled scalar equations. Consequently, a scalar, advective equation on a peri-

odic domain is adopted as the model equation in our analysis,

Ou ou
Ti + ox = o, (20)

where the phase velocity (,_) is equivalent to the eigenvalues of the Euler equations,

namely u - c, u + c, and u where u is velocity and c is the speed of sound. The

phase speed (,_) is treated as a parameter in the Fourier analysis to avoid the

Fourier convolution, therefore the analysis is linear. For the unsteady calculations,

the requirement of the time resolution of the flow field restricts the time marching

step. In other words, the variations of flow properties between time steps are small.

Thus, linear analysis is a viable tool.

In what follows, the procedure to obtain the amplification factor of the model

equation discretized by Runge-Kutta methods and compact differences is illustrated.

First, the generalized forms of the amplification factor for the 3 and 4-step Runge-

Kutta methods are derived. These representations of the amplification factors are

independent of the spatial discretization schemes. From the equations of Wray's

3-step scheme, Eqn.(7), we have

gl __ 1 + 8Z,

1 5g2 = 1 + -_Z + Zg 1,

1 3
g= l + -_Z +-_Zg ,

(21)

where

gl Qn = Q1,

g2 Qn = Q2,

gQ,, = Qn+l.

(22)

The variable Z represents the spatial discretization applied to the convective term (

-AOu/Ox ). By substituting the amplification factors of the intermediate steps, gl

and g2, into the last step of Wray's algorithm, we obtain the amplification factor,

g, for the 3-step scheme,

g=l+ Z+Iz 2 -_-_Z 3. (23)
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It is interesting to note that Eqn. (23) can be directly de'rived from the Taylor's

series expansion by adopting the invariance property of the time and spatial deriva-

tives of the model equation, i.e., Z = -AOu/Ox = Ou/Ot. This is valid because the

coefficients satisfy Eqn. (5), which is deduced from the Taylor's series expansion up

to the third-order term. On the other hand, the amplification factor of the 3-step

scheme proposed by Jameson et al., Eqn. (6), can be derived as

1 1Z3" (24)g=l+Z+ Z2+_

It is obvious that the scheme is not third-order accurate.

A similar analysis can be applied to the 4-step methods. Identical forms of the

amplification factors of both 4-step methods of concern (Eqns. (10) and (11)) are

obtained, such as

(25)

Unlike the case of the 3-step schemes, the effect of the order of accuracy of these

two 4-step schemes does not appear in the expression of the amplification factor.

This is because the amplification factor is derived based on the linearized equation.

Only by using Eqns. (5) and (9), which take into account nonlinear terms, can one

justify the order of the accuracy of the RK schemes.

The remaining task is to derive the explicit form of the spatial discretization

operation, Z, of compact difference schemes. The fourth-order compact difference

method, Eqn. (12), can be cast into the operator-type by defining

_2?Zi -- tti+l -- 2ul + _i--1, (26)

where ui could be any flow property of interest at grid point i. As a result, the

fourth-order method can be rewritten as,

i

2Ax (ui+l - ui-l) + O(Ax4). (27)

This equation allows us to express (Ou/Ox)i in an explicit form,

\ 2Ax ) + O(Ax4)" (28)

To proceed, we substitute this explicit, discretized form, Eqn. (32), into the model

equation, and we obtain

Z(4) _ 6Fsin(k)i
4 + 2cos(k)' (29)
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where F is the CFL number which is defined as F = _At/Ax, and ]¢ is the normal-

ized wave number (]¢ = 27rk/K) .

It is interesting to note that if the solution reaches a steady state solution, i.e., the

time derivative term is zero, the operator (1 +/f2/6) -1 in the discretized equation

becomes futile and the spatial discretization is represented by (ui+l - ui-1)/2Ax,

which is only second-order accurate. However, the steady state solution of the one-

dimensional wave equation is a constant and the spatial accuracy is meaningless.

On the other hand, the accuracy of multi-dimensional calculations is more complex.

For example, consider a two-dimensional version of the model equation discretized

by the fourth-order compact difference method, and we have

+ 1+ \ 2A= ) 1+ \ /=o.

(30)

Again, the operators (1 + _f_/6) and (1 + _2/6) are scalar tridiagonal matrices with

the dimensions IL × IL and JL × JL, respectively. IL and JL are the numbers

of the grid nodes in the x and y directions of the computational domain. When

IL - JL, two operators are identical. We then multiply Eqn. (30) by the operator

(1 + _-2/6) and obtain the steady state equation as

_= Ui+l,J2Ax- Ui-l,j _- Au ui,J+a2Ay- ui,j-a = 0. (31)

Therefore, the steady state solution is only second-order accurate.

Similarly, the spatial discretization of the sixth-order compact difference scheme

can be represented in the operator-type such as,

0u (_) -1 1= 1 + 60Ax (ui+2 + 28ui+1 - 28ui-1 - ui-_) + O(Ax6). (32)

And we obtain,

Z(6) = F[4sin(]c)cos(]c) + 56sin(_:)]i
(33)

1212 cos(]_) + 3]

Again, when solving the steady state solution with same number of grid nodes in

each direction of the computational domain, the spatial discretization is represented

by (ui+2 +28ui+1 -28ui_i -ui_2)/6OAx. Unlike the case of the fourth-order scheme,

this representation does not match any conventional central difference scheme and
it is at most second-order accurate.

According to the above discussion, we can obtain the amplification factor g(]¢) for

various combinations of the Runge-Kutta methods and compact difference schemes.

The amplification factor g(k) is a complex number and can be expressed as g(]¢) =
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exp[i&(]c)], where & is the normalized frequency and is defined as & = 21rwAt/r,

w is the frequency, r is the the time period of function u_, and the phase speed

()_) is equal to L/r. Here, the dissipative and dispersive artifacts of the numerical
schemes can be assessed:

1. Dissipation. The normalized frequency & is a complex number (¢b = a + Jr) and

its imaginary part represents the magnitude of the amplification factor, i.e.,

g(k) = e = e'°
Ig(k)l-e- (34)

The magnitude of the amplification factor is the artificial dissipation. When

Igl >-- 1, the scheme is unstable. For the calculations of unsteady flows, we want

Igl to be less than unity but very close to it to ensure numerical stability with

minimum artificial dissipation. In the following section, we plot Igl against k to

illustrate the artificial dissipation.

2. Dispersion. According to Eqn. (34), the relation of a(k) and ]¢ represents the

artificial dispersion. We plot & - a/F against ]¢ to show phase velocities. Notice

that the model equation is dispersionless and the phase velocity is a constant, i.e.,

),. After being normalized by the CFL number, the exact solution is a straight

line with 45 ° angle on the plot of & against ]¢.

Figure 1 shows the results of the Fourier analysis of the third-order Runge-Kutta

(RK3) method combined with fourth (CD4), and sixth (CD6) order compact differ-

ence schemes and the conventional second-order central difference scheme (CD2).

The figures show the dissipative as well as dispersive effects at CFL numbers from

0.4 to 1.4 with an increment of 0.2 between neighboring curves. Figure la shows

the dissipation of the RK3-CD6 scheme. The method is unstable for CFL numbers

greater than 0.8. As the order of spatial differencing decreases (compare Figs. la,

lc, and le), the limit of the CFL number increases for stable calculation.

Figure lb shows the dispersive effect of the RK3-CD6 scheme. For a CFL number

of 0.4, the phase velocity is correct for wave numbers up to 1.8. The phase velocities

are slower than they should be at large wave numbers. Increasing the CFL number

makes phase velocities deviate from the 45 ° straight line at smaller wave numbers.

Decreasing the CFL number merges the curves together to reach an asymptotic

curve. However, the dispersive effect at high wave numbers does not improve.

Comparing Figs. lb, ld, and If shows that the increase of the order of the spatial

differencing reduces the numerical dispersion at high wave numbers. Specifically, a

significant improvement is achieved by changing the spatial differencing from CD2

to CD4, whereas only a limited gain is obtained by switching from CD4 to CD6.

Figure 2 shows the results of the Fourier analyses of the fourth-order Runge-Kutta

(RK4) method combined with various central difference schemes. The CFL numbers

are the same as that in Fig. 1. Similar to the case of RK3, for the same CFL number

and wave number, e.g., CFL = 1.4, & -- 1.5, higher-order spatial discretization
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introduces more artificial damping (see Figs. 2a, 2c, and 2e) and {herefore reduces

the CFL number limit for stable calculation. Again, the dispersive error at high

wave numbers decreases as the order of the spatial differencing increases (see Figs.

2b, 2d, and 2f).

Figures. lc and 2c can be compared to show the difference of the dissipation

effects between the RK3 and RK4 methods. For the same CFL and wave numbers,

the RK4 method introduces more artificial damping, and a larger CFL number

could be used. On the other hand, Figs. ld and 2d show that an increase of the

order of the time marching scheme does not improve the dispersive effect at high

wave numbers.

From the above discussion, it is clear that reliable solutions of the finite difference

schemes are at low wave numbers. For example, for the RK4-CD6 method at CFL

= 0.8 (see Figs. 2a and 2b) the solution with wave numbers less than 1/3_r (6 grid

nodes per wave) is fairly accurate. Numerical solutions with higher wave numbers

(wave length less than 6 grid nodes) suffer significant dispersive and dissipative

errors. On the other hand, for the conventional RK4-CD2 method at the same

CFL, 12 to 16 grid nodes per wave are needed for an accurate solution.

It is interesting to note that compact difference schemes have no dissipative effect

at the highest wave number resolved by a given numerical grid, i.e., two grid nodes

per wave (see Figs. la, lc, le, 2a, 2c, and 2e). Nevertheless, a significant dispersive

error is introduced to these highest-wave-number waves and cause the even-odd de-

coupling of the numerical solutions. Furthermore, applying the compact difference

scheme twice to calculate the viscous terms of the Navier Stokes equations does not

eliminate the erroneous oscillation, owing to the linearity of the operation. These

high-wave-number waves continue oscillating with erroneous phase speeds through-

out the course of computation and eventually destroy the solution. It is therefore

appropriate to impose a small amount of high-order artificial damping to filter out

these waves while at the same time keeping the resolution at low wave modes intact.

Figure 3 shows the dissipation and dispersion effects of the RK4-CD6 method at

CFL=0.8 with various amounts of sixth-order artificial damping, defined as

r/u
A.D. = _[ i+3 + u;-a - 6(ui+: + ui-2) + 15(Ui+a + ui-a) - 20ui].. (35)

The range of 71 is from 0.01 to 0.05 with an increment of 0.01 between the neigh-

boring curves. Comparison between Fig. 3 and Figs. 2a and 2b shows that no

additional damping at low wave numbers is introduced into the system by the im-

posed artificial dissipation for r/_< 0.03, whereas the undesirable high-wave-number

waves are dissipated.

2.4 Numerical Examples

2.4.1 Acoustic Admittance of A Nozzle Flow

The first case is a forced oscillatory quasi-one-dimensional flow in a converging

nozzle. The governing equations are
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0Q 0E H (36)0-7-+ 0--Y=

where

Q= a, E= pu 2+p a, H= p , (37)

(e+p)u

p is density, p is pressure, and e is the total energy defined as e = p(C,T+ _u_). Cv

is the constant volume specific heat. The variable a is the cross sectional area and

is prescribed as a function of x. The theoretical solution of the acoustic admitttmce

of a choked nozzle was provided by Tsien r under the assumption that the velocity

of the base flow is a linear function of axial location as shown in Fig. 4. The nozzle

shape can be inversely derived according to Tsien's assumption, and we have

1 ( 2 _-I ) 2(_-I)a = _ 7 +'---1+ _-_ M2 ' (38)

where 7 is the specific heat ratio and M is the Mach number which can be expressed

as

The superscript • denotes the property at the nozzle throat. According to Tsien's

derivation, the linearized quasi-one-dimensional equations can be manipulated to

the following form under the isentropic condition,

z(1 "d2Paz- ("1-7i13) dP-it_(2-+i_--_)az2('1' + 1)- z)---y_-_ - 2 1 + ----7-7_ z-sT_ . P = 0 (40)
1

dP

(7 + 1)(1 - z)T z - (7 - 1 + ifl)P + (2 + ifl)U = 0 (41)

where

p__[i= P( z) eit3",

7P (42)
_t

U(z)

and _ are the velocity and pressure of the base flow,/3 is the normalized frequency

which is defined as 13 = w(1 - z)/(_* - _), and 7 is the non dimensionalized time

which is defined as 7 = _*t/x*, The independent variable z can be expressed

in different forms due to the linearity between the base flow velocity fi and axial

location x, and we have
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X

X*

ft
-'- mc" (43)

(,y+ 1)Ms
2+ ('r- a)M 

With Eqn. (43), it is clear that P and U axe functions of the Mach number (M)

with prescribed frequency (/3). Equation (40) is a hypergeometric equation 14 that

can be solved by a power series expansion. The converged solution does not exist

in the supersonic region because the Mach number is greater than unity. U(z) can

be easily solved with P(z) known as shown in Eqn. (41). Finally, the acoustic

admittance function defined as A(z) = U(z)/P(z) can be obtained as a function of

the Mach number.

In what follows, the procedure of the CFD calculation to compare with Tsien's

solution is illustrated. First, the base flow field is obtained by solving the quasi-

one-dimensional equations, Eqns. (36) and (37), using the RK4-CD2 method with

the nozzle area ratio prescribed by Eqns. (38) and (39). The results are checked

by the area Mach number relation 15 and the solution is accurate up to five decimal

digits. The perturbation at the inlet is obtained by specifying sinusoidai pressure

fluctuations in terms of magnitude and frequency. With the prescribed pressure

and isentropic correlation, the temperature fluctuation is also determined. Numer-

icaily, these boundary conditions are enforced by defining a vector k -- k(Q) at the

upstream boundary, such as

k- = _2 , (44)

0

where _a and _2 are the specified values of iv and T. To proceed, Equation (44) is

lineaxized to become a function of AQ, such as

Ok
kn+l = k" + :-=AQ,

oq
(45)

where k n÷l is equal to the specified pressure and temperature at the time step

n + 1 and 0k/0Q is a 3 x 3 matrix. In order to close the system, the null entry

in the vector k may be filled by the out-running characteristic relation deduced

from the flow equations. Numerically, the similarity transformation is applied to

the discretized flow equations (see Eqn. (4)), and we get

i

LM-I(Q i_ Q,,) = LM-IAt _ aikR k-l,
k=l (46)

i=l,...,N
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where i = 1,-.-, N represents the N-step RK method. Here_ M -1 is the eigenvector

matrix of Jacobian matrix A = 0E/0Q, and L is a selection matrix with zeros and

ones on the diagonal in such a fashion that the proper outrunning characteristics

are selected. By combining the imposed conditions, Eqn. (45), with the outrunning

characteristic relations, Eqn.(46), we form the complete equation at the boundary

point as,

i

= LM-1At E aikl:tk-x + k"+l - k'_'
(47)

i= l,...,N

For the supersonic out-flow condition, Eqn. (46) is used with the selection matrix L

equal to an identity matrix. In both cases, the out-running characteristic equations

are solved with one-sided difference as shown in Eqn. (14). In other words, the

characteristic boundary conditions are always discretized by an upwinding scheme

which is physically sound and the numerical stability is enhanced. These boundary

conditions are applied at each of the Runge-Kutta stages.

The acoustic admittance is a complex number and can be written as A = [A[e ie.

In the present paper, a small pressure perturbation of 1.1% (p' = 0.011/_) is imposed

at the nozzle inlet. The length of the converging part of the nozzle is 0.9 L* (see

Fig. 4) and the inlet Mach number is about 0.09. The frequency of the perturbation

is set at 13 = 6, which corresponds to about 2000 Hz.

Figure 5 shows the comparisons between the CFD results of the RK4-CD6 method

and the theoretical solution of the acoustic admittance in terms of the magnitude

IAI and the phase angle 0 in the subsonic region of the nozzle. Both the magnitude

and the phase angle of the acoustic admittance decrease as the flow speeds up. As

shown in the figure, perfect agreement is obtained for the comparison of IAI, while

the predicted phase angle is slightly off due to the resolution of the numerical grid

for the phase angle. In this case, the harmonic content of the solution is limited to

one frequency with a wave length comparable to the computational domain which

is resolved by 61 grid nodes. Therefore, all numerical schemes of concern provide

accurate solutions. The numerical errors of [A[ and 0 are tabulated in Table 2.

There is slight advantage in using the higher-order schemes for the prediction of

IAI; however, no obvious advantage of using the higher-order scheme for the phase

angle calculation is observed.

2.4.2 Shocked Sound Waves

The second case is the propagation of shocked sound waves in a tube with a

periodic boundary condition. The governing equations are the same as in the first

case, namely, Eqns. (36) and (37), with cross section area (a) equal to a constant.

This case is interesting for its complex harmonic content compared to the first

case. In addition, the capability of the high-order compact difference schemes for
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shock capturing can also be studied. At time equal to zero, a sinusoidal pressure

distribution is given. Because of the periodic boundary condition, only one cycle

resolved by 61 grid nodes is imposed in the computational domain. According to

the isentropic condition, the distributions of temperature, density, and speed of

sound are also determined. The velocity profile is determined by the simple wave

correlation16,such as

/_P(_}u(z) = dp
(48)

-y-I

where the average flow properties are denoted by a bar. With the simple wave

correlation, the wave forms of all flow properties are in phase and the initial con-

dition of the present CFD computation matches the theoretical analysis provided

by Morse and Ingard 8. It is interesting to note that the simple wave correlation is
am extension of a linear, plane, acoustic wave. For a variation of pressure less than

5%, the plane wave relations could be adopted, such as

T(x) = T (I + 7-1P'_ x))

p(x) = fi (1 + p'(x) _"TP /'

, ,p'(x)
= C(X) -_ ,

(49)

where p'(x) is the prescribed pressure fluctuation. As shown in Eqns. (48) and (49),

the wave speeds u + c, u - c and u vary as a result of the flow property distribution.

The distortion of the wave form is a cumulative effect resulting from the wave speed

distribution. For simple waves, i.e., all flow properties are in phase, the wave crest

will quickly overtake the trough and form a shock.

Figure 6 shows the time history of the pressure fluctuation at one end of the

computational domain for various finite difference schemes. According to Morse and

Ingard, the first shock appears after about two cycles for the case of a 10% pressure

perturbation (p'/_ = O. 1) 8. All schemes of concern predict the wave steepening rate

correctly. After the wave shocked, the flow evolution is no longer isentropic and the

kinetic energy is gradually converted to thermal energy due to the existence of the

shock wave. As a result, the strength of the shock wave diminishes as time passes.

The shock front is a combination of many wave modes travelling at the same

speed. The dispersion error introduced by the finite difference schemes will cause

the high-wave-number waves to travel with erroneous speeds. As shown in Fig. 6,

the methods of RK4-CD6 and RK4-CD4 with a small amount of the sixth-order

artificial damping (V = 0.02) crisply resolve the shock except for the over-shoots.
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These over-shoots are caused by the Gibbs phenomenon ahd can be fixed only by

TVD type shock-capturing schemes. Almost no difference can be observed between

the results of the CD4 and CD6 methods. On the other hand, the method of RK4-

CD6 without background filtering shows that significant high-wave-number waves

lag behind the shock front because the compact difference scheme introduces no

dissipative but high dispersive effects on the highest wave number waves. As shown

in the figure, these oscillations eventually contaminate the whole solution. For the

conventional RK4-CD2 method, results show significant oscillations of moderate

wave numbers behind the shock front because of dispersion errors.

Figure 7 shows the normalized power spectrums of the pressure profiles after

about 17 cycles calculated by different methods. The analytical solution is plotted

as the solid line. The power of each wave mode is roughly inversely proportional

to the square of the wave number (oc 1/n2). Since 61 grid nodes are used, only

30 Fourier modes are resolved for the Power spectrum (the other 30 modes are the

complex conjugates). Clearly, the method of RK4-CD2 has significant errors in low

wave modes. On the other hand, the methods of RK4-CD4 and RK4-CD6 compare

well with the analytical solution.

2.4.3 Vortex Propagation in an Uniform Flow

A Lamb vortex propagated in an uniform flow is chosen as a two-dimensional

numerical example. The vortex can be characterized by the circulation F and the

core radius a. The azimuthal velocity u0 at a distance r from the vortex center is

given as,

F r

ue --- 27r r 2 + a s' (50)

The flow near the vortex center is a rigid-body rotation (ue ¢x r). The flow far

outside the core is irrotational (uo o_ 1/r) with ue decreasing as r increases. Eqn.

(50) is a continuous function to connect the two extremes. With the prescribed

velocity field, the pressure and density distributions of the vortex can be determined

by the momentum and the energy equations,

0-7= p ' (51)

'7 P
+ -_ = ho, (52)

-y-lp

where ho is the total enthalpy and is set to be a constant such as ho = _/_/(7 - 1)_

with the free stream condition denoted by a bar. To proceed, substitute Eqns. (50)

and (52) into Eqn. (51) and integrate the equation over r. As a result, the pressure

distribution is obtained. Consequently, the density distribution and the whole flow

field is determined. The solutions of this stationary vortex can be superimposed

to any uniform flow with arbitrary speed. Physically, this process may be inter-

preted as a stationary vortex being observed from a moving coordinate system with

constant velocity. Thus, the vortex in an uniform flow can be constructed as,
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u_-_+u r,
(53)

V --_V I,

where the velocities of the backgrour_d flow are denoted by a bar and the superscript

denotes the vortex velocities specified by Eqn. (50). The pressure and density

distribution of the moving vortex is the same as that of the stationary vortex and

may be obtained from the solutions of Eqns. (51) and (52).

The boundary condition of the present case is an extension of the characteristic

type treatment discussed in Case 1. Essentially, only one-dimensional character-

istics (derived from two-dimensional flow equations) normal to the computational

boundary are considered. For the purposes of this discussion, the subsonic out-flow

condition is considered. The coupled equations of three out-running characteris-

tics and one specified boundary condition, similar to that in Eqn. (47), should be

solved. For steady state calculations, a back pressure (Pb) is specified to regulate

the flow rate, such as

k = (54)

Pb

Similarly, the dimension of vectors Q and R is four and the matrix M -1 is a 4 x 4

eigenvector matrix for the flux vector normal to the computational boundary.

For a non-reflective boundary condition, Giles' formulation 17 instead of the back

pressure is used to fill the entry for the specified boundary condition, such as

(cl)0c4 O,v)_ c2o-i-+ (0,u, = 0 (55)C3

C4

where y is in the direction parallel to the computational boundary. The variables

c_, i - 1,..., 4 are the characteristic variables and can be obtained by the similarity

transformation from the non-conservative form equations as illustrated by Giles. In

our case, the characteristic variables are derived from the conservative-form equa-

tions using the same eigenvector matrix M -1 as in the aforementioned discussion.

Giles' non-reflective formulation, Eqn. (55), is relatively simple to used with an

existing one-dimensional characteristic boundary condition. Nonetheless, according

to Giles' analysis, some two-dimensional effect is considered in the equation. Nu-

merically, Eqn. (55) may be discretized according to the finite difference scheme

of the interior nodes and combined with the discretized out-running characteristic

equations (the two-dimensional version of Eqn. (46)) to form the complete subsonic

out-flow boundary condition. It is interesting to note, however, according to Huff's

study is and our experience, that stretching the numerical grid nodes downstream

to dampen the outgoing unsteady waves is just as effective.
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For the in-flow conditions, the characteristic-type treatmeht combined with Giles'

equation (different from Eqn. (55)) may be adopted. For the present calculations,

however, the upstream condition is relatively insensitive to various forms of non-

reflective treatment as long as the proper out-running characteristic equation is

selected and solved with the prescribed incoming conditions similar to that in Eqn.

(47). In the present case, constant total pressure and total temperature are pre-

scribed as the forcing boundary conditions upstream.

As in the one-dimensional cases, dissipative and dispersive effects of various

schemes are assessed. The prescribed ,vortex flow field contains a broad band of

frequencies due to the distribution 0fthe azimuthal velocity. Theoretically, all wave

modes travels at the same speed to ensure the integrity of the vortex structure.

For numerical methods with dispersive error, the shape of the vortex could deform,

even break up in the later stage of the time marching procedure. In addition, the

dissipation effect of finite difference schemes can be evaluated by the conservation

of the sharp pressure dip at the center of the vortex propagated in the numerical

grid.

In the present calculations, the Mach number of the background flow is 0.4. The

grid size is 301 × 91 in the streamwise and transverse directions, respectively. Uni-

form grids are used in the axial direction and the transverse grids are stretched near

the outside boundary. The CFL number calculated based on the background flow

is about 0.7 for all calculations. As discussed before, a small amount of background

filtering (r/= 0.02) is applied for all calculations. The core radius (a) is about 1 cm

and is resolved by about 4 grid nodes.

Figure 8 shows the vorticity and Mach number contours of the initial condition

prescribed by Eqns. (50) - (53). Figure 9 shows the contours after the eddy prop-

agates about 60 core radii downstream as simulated by various numerical schemes.

The comparison between Fig. 8 and Fig. 9 shows that the structure of the eddy is

retained by the compact difference schemes (CD4 and CD6). In contrast, the eddy

predicted by the second-order central difference is shattered due to the excessive

dispersive error.

Figure 10 shows pressure distributions of the eddy at various instances. In this

figure, the x axis represents the streamwise locations non-dimensionalized by the

core radius of the vortex and the y axis is the pressure. For both CD4 and CD6

methods, the pressure at the vortex center increases about 1% through the process.

In comparison, the results of the second-order scheme show pressure fluctuations

with an overall increase about 3 %. The pressure fluctuation predicted by the

second-order scheme is due to the deviation of the vortex path.

2.4.4 Vortex Pairing

Finally, the calculation of the single vortex is extended to the simulation of the

vortex pairing. The vortex pairing is the controlling mechanism for the growth of

the mixing layer _°. In theory, vortex pairing occurs when the distance between

two vortices is less than a threshold value. Unfortunately, no theoretical analysis
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is available for compressible flows. In the present paper, the RK4-CD6 method is

used to simulate the pairing process to demonstrate the resolution of the high-order

compact difference scheme.

The initial condition is specified by two identical vortices placed 5 core radii apart

in a quiescent gas. The core radius is 1 cm and circulation is 15 m2/s. At the center

of each vortex, there is a pressure deficit about 15% compared to the ambient gas.

The grid size is 201 x 201. Uniform grids are used at the center of the computational

domain to resolve the vortices. The grids are slightly stretched in all four directions

to prevent erroneous wave reflection. In addition, one-dimensional characteristic

equations combined with Giles' unsteady, subsonic, out-flow equation is solved on

the boundary as the non-reflective boundary condition.

Figure 11 shows the contours of the vorticity magnitude at various stages of the

vortex interaction. The whole sequence is about one and a half revolutions. Finally,

a single larger vortex emerges as the result of the vortex pairing interaction. Figure

12 shows the corresponding Mach number contours for the same flow.

3. Concluding Remarks

In this work, the quasi-one-dimensional and two-dimensional Euler solvers us-

ing various combinations of the Runge Kutta methods and the compact difference

schemes were developed for numerical simulations of unsteady flows. The accuracy

of the finite difference schemes is assessed by Fourier analysis and numerical exam-

ples in terms of numerical dissipation and dispersion. The dispersive characteristic

is improved by high-order compact difference schemes compared to the second-order

central difference. The increase of the order of time stepping scheme, on the other

hand, enlarges the CFL limit for stable computations. In particular, significant im-

provement of the dispersive effect is obtained by adopting the fourth-order compact

scheme (6 to 8 grid nodes to resolve a wave) instead of the conventional second-order

central difference (12 to 16 grid nodes for one wave). The use of the sixth-order

compact scheme (5 to 8 grid nodes for one wave), however, gains little improvement

compared with the fourth-order scheme. It was also found that the compact dif-

ference schemes have no dissipative but high dispersive effects to the highest-wave-

number waves resolved by a given numerical grid. Consequently, a small amount of

background filtering is necessary to dissipate the high-wave-number waves and, at

the same time, keep the low-wave-number solution intact. Other issues such as the

order of accuracy of the Runge-Kutta schemes for nonlinear equations are analyzed.

Specifically, the criteria for the 3 and 4-step methods to be third and fourth-order

accurate are derived. The accuracy of the compact difference schemes for the steady

state solution is also addressed.

In general, simulation of unsteady flow provides an overwhelming amount of in-

formation. It is our experience that the initial and boundary conditions must be

carefully set up to obtain interpretable and physically meaningful solutions. For

practical purposes, Giles' non-reflective equations combined with one-dimensional

characteristic equations and their implementation to the present numerical scheme
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were illustrated in deta_i. In addition, the initial conditi()ns of the simple wave,

plane acoustic wave, and the Lamb vortex were also provided. Finally, as illus-

trated in the numerical examples, for flows of simple harmonic content, e.g., one

frequency in Case 1, the conventional second-order central difference scheme is ad-

equate provided enough grid nodes are used to resolve the very wave mode. On

the other hand, for flows of complex harmonic content, the use of the Runge-Kutta

method combined high-order compact difference schemes shows crisp resolution of

unsteady flows.
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Table 1. The Accuracy of the 3-Step Runge-Kutta Methods.

At Expansion

0 R

1 R

z RR'

2 ! ( R2R"3 + RR '2)

3-step R-K methods
R

(a31 + a32 Jr" a33)R

[alia32 -4- ot33(a21 -it- a22)]RR'
2 2 /t

½[a_za32 + (a21 + a22) a33]R R
-_"OtI I0_22 0t33 RR_2

Table 2. The Relative Error of the Acoustic Admittance Calculation (%).

Numerical Schemes Error of [A] Error of 0

RK4-CD6 0.45 3.6

RK4-CD4 0.52 3.3

RK4-CD2 1.65 4.1
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Fig. 1 Dissipation and dispersion characteristics of the RK3 time-stepping combined with

various spatial discretization schemes.
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Fig. 2 Dissipation and dispersion characteristics of the RK4 time-stepping combined with
various spatial discretization schemes.
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Fig. 6 Time histories of the pressure fluctuations of the N-wave calculation at one end of the

periodic domain by various numerical schemes.
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Fig. 8 Vorticity and Mach number contours of an analytical Lamb vortex.
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Fig. 9 Vorticity and Mach number contours of the lamb vortex after travelling about 60 core

diameters predicted by various numerical schemes.
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Fig. I[ The vorticity magnitude contours for the vortex pairing.
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Appendix B

CMOTT Biweekly Seminars / Technical Meetings

The purpose of these seminars is to exchange ideas and opinions on the latest

developments and current state of turbulence and transition research. The speakers

are invited from within and without of the NASA LeRC, including foreign speakers.

The seminars were intended not noly to keep the members informed of the latest

development of local turbulence and transition modeling research but also to increase

interactions between group members and other researchers at the NASA LeRc.

The following is the meeting schedule and the abstract of the semainars during

the reporting period.
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Date:

To:

From. •

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

July 3, 1991

CMOTT Members and SVR and IFMD Staff

William W. Liou (6682)

CMOTT Biweekly Meeting

The following is a tentati _'e schedule for the CMOTT biweekly get-together from July

10, 1991 to August 28, 1991.

The presentations will be .;uformal and active participation is expected from the at-

tendants. Soda and snack will be served in the meetings. These meetings complement the

CMOTT Seminar Series, which are mainly formM presentations.

We wonld also appreciate some contributions from you. Subjects related to either the

theoretical, experimental or computational aspects of turbulence and transition modeling

are welcomed. Those who are willing to share their experience in these areas can contact

me or Dr. T.-H. Shih at 6680 for further arrangement.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

July 10, 1991

July 24, 1991

August 7, 1991

August 28, 1991

J. Lepicovsky (61-6753)

LDV Measurement of Large Structures in a Tone

Excited Turbulent Jet

C. R. Wang (5865)

Computations of Turbulence in a Shock/Turbulent

Boundary Layer Interaction Flow

A. Hsu (61-6648)

PDF Turbulence Model and Its Applications

C. Steffen (8508)
DTNS: An Accurate and Efficient Testbed for

Incompressible Flow Turbulence Modeling
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Date:

To:

l_om:

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

September 4, 1991

CMOTT Members and SVR and IFMD Staff

William W. Liou (6682)

CMOTT Biweekly Meeting

The following is a tentative schedule for the CMOTT biweekly get-together from

September 11_ 1991 to October 23_ 1991 .

The presentations will be informal and active participation is expected from the at-

tendants. Soda and snack will be served in the meetings. These meetings complement the

CMOTT Seminar Series, which are mainly for_nal presentations.

We would "also appreciate some contributions from you. Subjects related to either the

theoretical, cxperimental or computational aspects of turbulence and transition modeling

are welcomed. Those who axe willing to share their experience in these areas can contact

me or Dr. T.-H. Shih at 6680 for further arrangement.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

Sept. 11, 1991

Sept. 25, 1991

October 9, 1991

T. Bui (5639)

Implementation of the Chlen Low-Re k-e Models into the
Proteus Code

K. Ahn (5965)

A 2-D Oscillating Flow Analysis Using Quasl-steady
Turbulence Model

j. Schwab (8446)
Variable-denslty Turbulence Modeling for Turbomachlnery

October 23, 1991 M. Mawid (5965)

Multiphase Turbulent Combustion
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Date:

To:

From:

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

November 4, 1991

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following is a tentative schedule for the CMOTT biweekly get-together from

November 6, 1991 to December 18_ 1991.

This will be the last session of the CMOTT group-meetings/informal- seminars this

year but the series will resume in mid-January 1992. Thank you for your patience and

participation through out the year. The group-meetings/informal-seminars of CMOTT

are meant not only to serve CMOTT members but also to provide an informal form for

those who are involved in transition/turbulence predictions. I thank all the speakers and

participants who have made these objectives "realizable". Now, we are planing for 1992.

If you have any suggestions or like to give a talk or two in the coming year, please call me

or Dr. T. H. Shih at 3-6680. In the mean time, don't forget to mark your calendar for the

following talks !

HA PP Y HOLIDA Y5 !!!

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

Nov. 6, 1991

Nov 20, 1991

Dec. 4, 1991

Dec. 18, 1991

W. Liou (3-6682)

Weakly Nonlinear Models for Turbulent Free Shear Flows (2)

- A Self-Contalned Energy Transfer Model

D. Ashpis (3-8317)

DNS of Disturbances in Boundary Layer Flow

B. Rubinstein (61-6612)

Analytical Theory of Turbulence and Turbulence Modeling:
TSDIA and RNG

B. Duncan (61-2998)

A New Three-Equation Model for Turbulence

170



Date:

To:

From:

Subject:

CENTER FOR MODELING OF
TURBULENCE AND TRANSITION

January 30, 1992

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following is a tentative program for the CMOTT biweekly get-together/seminar from

February 5, 1992 to March 18, 1992. Ybu are welcomed to join us.

Thanks to the your suggestions, we have made a few changes from last year's format. First,

we have scheduled the CMOTT Seminar Series, which are mainly formal presentations, into

the biweekly time frame of the CMOTT group-meeting/informal-talks. Also, the abstract

of each presentati.on, formal or informal, will be distributed about one week prior to its

scheduled date. Again, if you are interested in giving a presentation, please contact us.

The meeting will run from 1:30-2:15 PM in Room 145, Sverdrup Building, unless otherwise

noted.

(1) Feb. 5, 1992

(2) Feb. 19, 1992

(3) March 4, 1992

(4) March 18, 1992

D. Davis

Weakly Nonlinear Vortex/Wave Interactions in

Incompressible Cross-flow Boundary Layers in Transition

Z. Yang

A Modeling of Bypass Transition

g. Za_:lan

Effect of "Delta-Tabs" on the Evolution of Axisymmetric

Jets

Professor R. M. C. So, Arizona State University

Near Wall Heat Transfer Modeling
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Date:

To:

From,

Subject:

CENTER FOP,. MODELING OF

TURBULENCE AND TRANSITION

March 26, 1992

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following is a tentative program for the CMOTT biweekly get-together/seminar from

April 1, 1992 to May 13, 1992. You are welcomed to join us. Also, if you are interested

in giving a presentation, please let us know.

The meeting will run from 1:30-2:15 PM in Room 228, Sverdrup Building, unless otherwise

noted.

(5) April 1, 1992

(6) April 15, 1992

(7) April 29, 1992

(8) May13, 1992

J. Van der Vegt

The Development of an ENO-Osher Scheme for Direct

Simulation of Compressible Flows

J. Goodrich

Unsteady Time Asymptotic State: Incompressible Results,

New Directions for Algorithms

T.-H. Shih

Kolmogorov Behavior of Near-Wall Turbulence and

Its Application in Turbulence Modeling

Z. Yang

A Modeling of Bypass Transition
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CENTER. FOR. MODELING OF
TURBULENCE AND TRANSITION

Date:

To:

From:

Subject:

June 1, 1992

CMOTT Members azld SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following isa tentative program for tile CMOTT biweckly gct-togetherfseminar from

June 10, 1992 to July 22, 1992. You are welcomed to j0ill US.

The talks will be informal and active participation will be expected from the audience.

Also, if you are interested in giving a presentation about tile progress or some results of

your own work on turbulence or transition, please let us know.

Tlle meeting will run from 1:30-2:15 PM ill Room 228, Svcrdrup Building, unless otherwise

noted.

(9) June 10, 1992 J. Zhu

Finite Volume Computations in Incompressible Flows

with Complex Geometries

(10) June 24, 1992 J. Lee

RPLUS Code and Standard k - e Models and Applications

(11) July 8, 1992 R. Mankba_ti

Unsteady Turbulent Flows

(12) July 22, 1992 D. Rigby

The Effect of Spanwise Variations in Momentum on

Leading Edge Heat Transfer

173



CENTER FOR MODELING OF
TURBULENCE AND TRANSITION

Biweekly Meeting Series (1)

Weakly Nonlinear Vortex/Wave Interactions in

Incompressible Crossflow Boundary Layers in
Transition

by

Dominic Davis

ICOMP

Wed., 5 February, 1992
1:30-2:15 PM

Room 145, SVR Building

ABSTRACT

The instability of an incompressible three-dimensional boundary layer
is considered theoretically and computatlonally in the context of vor-
tex/wave interactions.Specifically the work centres on two low-amplitude,
lower-branch Tollmien-Schlichting (TS) waves which mutually interact
to induce a weak longitudinal vortex flow;the vortex motion,in turn,gives
rise to significant wave-modulation via wall-shear forcing.The character-
istic Reynolds number is taken as a large parameter and,as a conse-
quence,the TS waves and the vortex are governed primarily by triple-
deck theory.The nonlinear interaction is captured by a viscous partial-
differential system for the vortex coupled with a pair of amplitude equa-
tions for the wave pressures. Computations were performed for relatively
small crossflow values.Three distinct possibilities were found to emerge
for the nonlinear behaviour of the flow solution downstream - an alge-
braic finite-distance singularlty, far-downstream decay or repeated oscil-
lations - depending on the various parameter values,the input amplitudes
and the wave angles.
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CENTER FOR MODELING OF
TURB ULENCE AND TRANSITION

Biweekly Meeting Series (1992-2)

A k-c Model for Near Wall Turbulence and
its Application in Turbulent Boundary Layer

with/without Pressure Gradient

Z. Yang

ICOMP

Wed., 19 February, 1992
1:30-2:15 PM

Room 145, SVR Building

ABSTRACT

A k- c model is proposed for turbulent wall bounded flows. In this
model, turbulent velocity scale and turbulent time scale are used to
define the eddy viscosity. The time scale used is bounded from below
by the Kolmogorov time scale. The dissipation equation is reformulated
using this time scale, removing the singularity of the high Reynolds
number k- _ equation at the wall and rendering the introduction of
the pseudo-dissipation unnecessary. The damping function used in the

eddy viscosity is chosen to be a function of R_ = _ instead of y+.
Thus, the model could be used for flows with separa_tion. The model
constants used are the same as the model constants in the commonly
used high turbulent Reynolds standard k- _ model. Thus, the proposed
model would reduce to the standard k- _ model when it is far away
from the wall. Boundary layer flows at zero pressure gradient, favorable
pressure gradient, adverse pressure gradient and increasingly adverse
pressure gradient are calculated respectively. The comparisons of model
predictions and the available experimental data are found to be good.
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CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

Biweekly Meeting Series (1992-3)

Effect of Tabs on the Evolution of Axisymmetric Jets

by

Khairul Zaman

IFMD

Wed., 4 March, 1992
1:30-2:15 PM

Room 145_ SVR Building

ABSTRACT

Vortex generators, in the form of small tabs at the nozzle exit, can have
a profound influence on the evolution of an axlsymmetric jet. Using
tabs of certain shapes, the jet cross section can be distorted almost
arbitrarily. Such distortion is accompanied by elimination of screech
noise from supersonic jets and a significant increase in jet mixing. Key
results obtained so far, covering a jet Mach number range of 0.3 and
1.8, will be summarized in this presentation. Observations will be made
on the mechanisms of the effect including the likely vorticity dynamics
in the flow.
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CENTER FOR MODELING OF
TURBULENCE AND TRANSITION

Biweekly Meeting Series (1992-4)

Near-Wall Modeling of Turbulent Heat Transfer

by

Professor Ronald M. C. So

Mechanical and Aerospace Engineering

Arizona State University

Wed., 18 March, 1992
1:30-2:30 PM

Room'119, Building 5

ABSTRACT

A near-wall two-equation model for turbulent heat fluxes is derived from
the temperature variance and its dissipation-rate equations and the as-
sumption of gradient transport. The near-wall asymptotlcs of each term
in the exact equations are examined and used to derive near-wall cor-
rection functions that render the modeled equations consistent with
these behavior. Thus modeled, the equations are used to calculate
fully-developed pipe and channel flows with hear transfer. It is found
that the proposed two-equation model yields asymptotically correct near-
wall behavior for the normal heat flux. the temperature variance and its
near-wall budget and correct limiting wall values for these properties
compared to direct simulation data and measurements obtained under
different wall boundary conditions.

CONTACT: T.-H. Shih, PABX 3-5698
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CENTER FOR MODELING OF

TURB ULENCE AND TRANSITION

Biweekly Meeting Series (1992-5)

The Development of an ENO-Osher Scheme for
Direct Simulation of Compressible Flows

by

Jaap Van der Vegt

ICOMP

Wed., April 1, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

Direct simulation of turbulence and transition in compressible wall
bounded flows presents an alternative to investigate important physical
phenomena which are difficult to measure or study otherwise. It also
provides data useful for turbulence modeling. A _ new program is be-
ing developed which solves the three-dlmenslonal compressible Navier-
Stokes equations using a higher order, fully implicit and time accurate
ENO scheme together with Osher flux splitting. In this presentation an
overview will be given of the numerical scheme and several test cases,
both for supersonic and subsonic flow, will be presented and further
improvements will be discussed.
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CENTER FOR MODELING OF

TURB ULENCE AND TRANSITION

Biweekly Meeting Series (1992-6)

Unsteady Time Asymptotic States: Incompressible Results
and New Directions for Algorithms

by

John Goodrich

IFMD

Wed., April 15, 1992
1:30-2:15 PM

Room 228, SVR Building

ABSTRACT

Unsteady time asymptotic flow states for high Reynolds number viscous incom-
pressible flow problems are presented. Discrete frequency flows are shown for
the square driven cavity, with periodic cases for Re = 9000 and Re = 9600, and
with aperiodic cases for Re = 9700 and Re = 10000. The algorithm for these cal-
culations is based on the fourth order PDE for incompressible fluid flow which

uses the streamfunction as the only dependent variable, it is second order ac-
curate in space and time, and it has a stability constraint of CFL <_ 1. The
algorithm is extremely robust with respect to Reynolds number.

The direct numerical simulation of transition and turbulence requires nu-
merical methods to be more than second order accurate in order to accurately

represent the relevant scales of the physical processes. Recently developed
finite difference algorithms are presented for unsteady convection equations,
including the advection and inviscid Burgers equation in one space dimension,
and the wave equation treated as a system, with remarks on diffusion equa-
tions and extension to higher space dimensions. The new algorithms that will
be discussed all use local stencils, they range from third to seventh order in
accuracy, they all have the same order of accuracy in both space and time, and
they are all one step explicit methods (except for diffusion equations). Since all
of the algorithms use a small local stencil, the number of degrees of freedom of
known data required for higher order accuracy is obtained by higher information
density than just the solution data. The =use of a two point stencil (for some
of the methods) allows for arbitrary grid spacing, though a convective stability
constraint must be observed at each grid point. The use of local data for an
explicit algorithm with high order accuracy avoids the requirement of using a
global solution method such as compact difTerencing or spline based algorithms.
There will be computational results for all of the algorithms that are presented.
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CENTER FOR MODELING OF
TURB ULENCE AND TRANSITION

Biweekly Meeting Series (1992-7)

Kolmogorov Behavior of Near-Wall Turbulence
and Its Application in Turbulence Modeling

by

Tsan-Hsing Shih
ICOMP

Wed., April 29, 1992
1:30-2:15 PM

Room 228, SVR Building

ABSTRACT

The near-wall behavior of turbulence is re-examined in a way different from
that proposed by Hanjalic and Launder[ _] and followers[2l,i31,14].lsl. It is shown
that at a certain distance from the wall, all energetic large eddies will reduce

to Kolmogorov eddies (the smallest eddies in turbulence). All the important
wall parameters, such as friction velocity, viscous length scale, and mean strain
rate at the wall, are characterized by Kolmogorov microscales. According to this
Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such
as turbulent kinetic energy, dissipation rate, etc. at the location where the
large eddies become "Kolmogorod' eddies, can be estimated by using both di-
rect numerical simulation (DNS) data and asymptotic analysis of near-wall
turbulence. This information wi_l provide useful boundary conditions for the
turbulent transport equations. As an example, the concept is incorporated in
the standard k-e model which is then applied to channel and boundary layer
flows. Using appropriate boundary conditions (based on Kolmogorov behavior
of near-wall turbulence), there is no need for any wall-modification to the k-
e equations (including model constants). Results compare very well with the
DNS and experimental data.
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CENTER FOR MODELING OF
TURBULENCE AND TRANSITION

Biweekly Meeting Series (1992-8)

A Modeling of Bypass Transition

by

Z. Yang

ICOMP

Wed., May 13, 1992
1:30-2:15 PM

Room 228, SVR Building

ABSTRACT

A model for the calculation of bypass transitional boundary layers due to the
freestream turbulence is proposed. The model combines a near wall k-e model
proposed for the fully developed turbulent flows with the intermittency of the
transitional boundary layers. The intermittency factor is assumed to be a func-
tion of both the free stream turbulence and the shape factor of the boundary
layer. Transitional boundary layers over a flat plate with different freestream
turbulence level are calculated using the proposed model. It is found that the
model calculations agree well with the experimental data and give a better pre-
diction compared with other low Reynolds number k- e models, which do not
incorporate the intermittency effect.
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CENTER FOR MODELING OF
TURBULENCE AND TRA NSITION

Biweekly Meeting Series (lgg2-g)

Finite-Volume Computations of Incompressible
Flows with Complex Geometries

by

J. Zhu

ICOMP

Wed., June 10, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

A brief review is given of finite-volume procedures developed at the
Institute for Hydromechanics, University of Karlsruhe, for calculating
incompressible elliptic flows with complex boundaries. The procedures
include: numerical grid generation, higher-order bounded convection
schemes, zonal solution, simulation of two-phase flows, and near-wall
turbulence modelling. Various application examples will be given.
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CENTER FOR MODELING OF
TURB ULENCE AND TRANSITION

Biweekly Meeting Series (1992-10)

Development of the RPLUS code with
Standard k-_ model and Their Applications

by

Jinho Lee

Sverdrup Technology, Inc.

Wed., June 24, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

The primary goal of this research effort is to develop a CFD tool which can be used in

a variety of practical supersonic/hypersonic propulsion device development/analysis envi-

ronments. One focus of this work has been to develop and validate the Reactive Propulsion

code based on LU Scheme(RPLUS). This effort also includes the development of turbu-

lence models which can be used in the predictions of highly complex flow environments
inside of combustors.

This presentation will cover only a small part of a larger development effort and focus

will primarily on the analysis, implementation, and development of the turbulence model

capabilities of the RPLUS code.
Some of the issues which will be covered are; formulation of the turbulence models,

the numerical technique used to solve the turbulence model equations, and modeling of

compressibility effects. The primary numerical technique used in the RPLUS code is

the LU-SSOR(LU scheme based on Successive Symmetric Over Relaxation) technique.

Therefore, the turbulent kinetic energy transport and dissipation transport equations are

also solved using the LU-SSOR numerical technique.
Both two and three dimensional turbulence model development are being developed

for the RPLUS code. However, the majority of the presentation 1rill focus on the devel-

opment of the two dimensional k-e models for the RPLUS code. Issues regarding com-

pressible wall-function bound'ary conditions and compressibility effects will be addressed.

Both low and high Reynolds number forms of the k-e models are being developed. The

"standard" low Reynolds number model of Lalmder-Sharma _md Chien has been used in

this study. The problems of primary interests _u'e supersonic turbulent boundary-layers,

shock-wave/boundary-layer interactions, and shear-layers in two or three dimensional en-
vironments.
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CENTER FOR MODELING OF
TURB ULENCE AND TRANSITION

Biweekly Meeting Series (1992-11)

Unsteady Turbulent Flows

by

Reda R. Mankbadi
NASA Lewis Research Center

Wed., July 8, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

Current research activities emphasize computation/modelling of turbu-
lent flows when basic flow is time-periodic. Wall-bounded flows and free
shear flows exhibit different features when the basic flow is unsteady;
and as such, different approaches are used to model them.

(A) In wall-bounded, oscillatory flows, two approaches are used to
model turbulence: (I) Turbulence is assumed to behave in a quasi-steady
manner, and steady-state models are directly extended to the unsteady
case. This approach fails at high frequencies of oscillations. (11) Rapid
distortion theory (RDT) is successfully adapted to aid in turbulence
modelling of highly unsteady flows (high frequencies). The eddy viscosity
hypothesis is replaced by the ratio of turbulent stresses/kinetic energy;
which is given by RDT as a function of the accumulated rate of strain.

(B) In free shear flows (naturally unsteady, or excited to be un-
steady), two approaches are investigated: (!) The large-scale (organized,
coherent) component is modelled as instability waves interacting with
each other as well as with the mean flow and the fine-scale (random,
background) turbulence. Integrated klnetlc-energy equations are then
obtained for each scale of motion. The approach is successful in pre-
dicting results in good agreements with experiments in which excitation

devices are used to control jet mixing and turbulence. (11) The other
approach adopted is Large-Eddy Simulations (LES) with application to
predicting the far-field noise of a supersonic jet.

CONTACT: William W. Liou, PABX 3-6682
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CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

Biweekly Meeting Series (1992-12)

The Effect of Spanwise Variations in

Momentum on Leading Edge Heat Transfer

by

David Rigby
Sverdrup Tech. INc.

Wed., July 22, 1992
1:30-2:30 PM

Room 228, SVR Building

• ABSTRACT

A study of the effect of spanwise variation in momentum on leading
edge heat transfer is discussed. Numerical and experimental results
are presented for a circular leading edge and for a 3:1 elliptical leading
edge. Direct comparison of the two-dimensional results, that is with no
spanwise variations, to the analytical results of Frossling is very good.
The numerical calculation, using the PARC3D code, solves the three-
dimensional Navier-Stokes equations, assuming steady laminar flow on
the leading edge region. Experimentally, increases in spanwise averaged
heat transfer coefficient as high as 50% above the two-dimensional value
were observed. Numerically, the heat transfer coefficient was seen to
increase by as much as 25% percent. In general, the circular leading
edge, under the same flow conditions, produced a higher heat transfer
rate than the elliptical leading edge. As a percentage of the respective
two-dimensional values, the circular and elliptical leading edges showed
similar sensitivity to spanwise variations in momentum. By equating the
root mean square of the amplitude of the spanwise variation in momen-
tum to the turbulence intensity, a qualitative comparison between the
present work and turbulent results was possible.

CONTACT: William W. Liou, PABX 3-6682
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